Novel Wide Bandgap Semiconductor Ga₂O₃ Transistors

<u>Masataka Higashiwaki</u>^a, Kohei Sasaki^{b,a}, Takafumi Kamimura^a, Man Hoi Wong^a, Daivasigamani Krishnamurthy^a, Akito Kuramata^b, Takekazu Masui^c, and Shigenobu Yamakoshi^a

^a National Institute of Information and Communications Technology, Japan, mhigashi@nict.go.jp, ^b Tamura Corporation, Japan, ^c Koha Co., Ltd., Japan.

We present the current status of transistor technology development based on new oxide compound semiconductor, gallium oxide (Ga_2O_3). We have been proposing Ga_2O_3 as a promising candidate for power device applications because of its excellent material properties and suitability for mass production [1]. The 4.8-eV bandgap and the Baliga's figure of merit of Ga_2O_3 are much larger than those of SiC and GaN, which will enable Ga_2O_3 power devices with higher breakdown voltage (V_{br}) and efficiency than SiC and GaN devices. The other important advantage of Ga_2O_3 is that a single-crystal bulk can be grown by using the same melt growth methods as are used for sapphire. Therefore, Ga_2O_3 power devices have the obvious potential to surpass SiC and GaN in not only device performance but also cost effectiveness. First, we succeeded in demonstrating metal-semiconductor field-effect transistors (MESFETs) using a single-crystal Ga₂O₃ channel grown on a β -Ga₂O₃ (010) substrate [1]. The MESFET showed excellent device characteristics such as a three-terminal off-state $V_{\rm br}$ of 250 V and a drain current ($I_{\rm d}$) on/off ratio of about four orders of magnitude. However, the device suffered from high contact resistance of source and drain electrodes. In addition, its I_d on/off ratio was limited by a small leakage current through the unpassivated Ga₂O₃ surface. Recently, we fabricated Ga₂O₃ metal-oxide-semiconductor FETs (MOSFETs) with an *n*-type Sn-doped channel layer grown by molecular-beam epitaxy (MBE) that overcame the drawbacks of the MESFETs [2].

Depletion-mode Ga₂O₃ MOSFETs were fabricated on Fe-doped semi-insulating single-crystal β -Ga₂O₃ (010) substrates. A Sn-doped *n*-Ga₂O₃ channel layer with a thickness of 300 nm was grown on the substrate by MBE. Figures 1(a) and (b) show a cross-sectional schematic illustration and an optical micrograph of the Ga₂O₃ MOSFET, respectively. Multiple Si-ion implantations were performed to the regions for source and drain electrodes to form a 150-nm-deep box profile with Si=5×10¹⁹ cm⁻³, followed by activation annealing at 925°C for 30 min. Then, a Ti/Au metal stack was deposited on the implanted regions and annealed at 470°C for 1 min. The specific contact resistance as measured by the circular transmission-line method was as low as $8.1 \times 10^{-6} \ \Omega \cdot cm^2$. A 20-nm-thick Al₂O₃ gate dielectric and passivation film was formed on the Ga₂O₃ layer at 250°C by plasma atomic layer deposition. The gate metal was formed with Ti/Pt/Au on top of the Al₂O₃ film. The gate width, source-drain implant spacing, and diameter of the inner circular drain electrode were 500, 20, and 200 µm, respectively.

Figure 2(a) shows the DC output characteristics of the Ga₂O₃ MOSFET measured at room temperature. The I_d was effectively modulated by the gate voltage (V_g) with good saturation and sharp pinch-off characteristics. The maximum I_d was 39 mA/mm at V_g =+4 V. The three-terminal off-state V_{br} was as high as 370 V at V_g =-20 V. The transfer characteristic of the MOSFET at a drain voltage (V_d) of 25 V is shown in Fig. 2(b). The I_d on/off ratio was extremely high, exceeding ten orders of magnitude with the measured off-state leakage reaching the lower limit of the measurement instrument. These Ga₂O₃ MOSFET characteristics were much better than those of the Ga₂O₃ MESFETs we had reported previously [1]. Figure 3(a) illustrates the temperature-dependent transfer characteristics of the MOSFET at V_d =25 V. The corresponding I_d on/off ratios, defined as the I_d at V_g =0 V divided by the I_d at V_g =-25 V, are plotted in Fig. 3(b). These device characteristics evolved smoothly with increasing device operating temperature. No kinks or abrupt changes that might be indicative of breakdown events and/or permanent degradation were observed, suggesting stable device operation in the whole temperature range from 25 to 250°C. The MOSFET maintained a high I_d on/off ratio of approximately four orders of magnitude even at 250°C as shown in Fig. 3(b). All these device characteristics indicate that the Ga₂O₃ MOSFET can perform at elevated temperatures up to at least 250°C without noticeable irreversible degradation.

This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

References

[1] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide (Ga₂O₃) metalsemiconductor field-effect transistors on single-crystal β -Ga₂O₃ (010) substrates," *Appl. Phys. Lett.*, vol. 100, pp. 013504, January 2012.

[2] M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion-mode Ga_2O_3 metal-oxide-semiconductor field-effect transistors on β -Ga₂O₃ (010) substrates and temperature dependence of their device characteristics," *Appl. Phys. Lett.*, vol. 103, pp. 123511, September 2013.

Fig. 2: (a) DC output and (b) transfer characteristics of Ga₂O₃ MOSFET.

Fig. 3: (a) Transfer characteristics and (b) *I*_d on/off ratios of Ga₂O₃ MOSFET as a function of temperature.