ISDRS 2013, December 11-13. 2013

NiGe/n⁺Ge Junctions with Record-low Contact Resistivity (~3×10⁻⁸ Ωcm²) Formed by Two-step P-ion Implantation

Masahiro Koike, Yuuichi Kamimuta, Etsuo Kurosawa, and Tsutomu Tezuka

Green Nanoelectronics Center (GNC), National Institute of Advanced Industrial Science and Technology (AIST),

Japan, massahiro.koike@aist.go.jp

To realize Ge *n*MOSFETs with metal contacts on *n*⁺Ge S/D junctions, such as NiGe/*n*⁺Ge junctions, a large Schottky barrier height (SBH) of ~0.6 eV, resulting in a high contact resistivity (ρ_c), is an issue that remains to be resolved [1,2]. The high ρ_c is due to the Fermi level pinning of NiGe close to the valence band maximum of Ge. One way to resolve this issue is to increase the electron concentration of P at the NiGe/Ge interface, leading to a reduced effective SBH. In this study, we have fabricated NiGe/*n*⁺Ge junctions by two-step P-ion implantation to intentionally increase the impurity concentration (N_B) of P at the NiGe/*n*Ge interface while keeping a low drain leakage current in Ge *n*MOSFETs. Using this technique, an ultralow ρ_c of ~3×10⁻⁸ Ω cm² and an I_F/I_R ratio of over 10⁶ were demonstrated.

NiGe/ n^+ Ge junctions were fabricated as follows. P ions were implanted (1st P I/I) into pGe(100) with SiO₂ isolation at an acceleration energy (E_A) of 20 keV, followed by annealing at 600°C for 1 min to form n^+ Ge/pGe(100). After annealing, P ions were again implanted (2nd P I/I) into the n^+ Ge at E_A of 10 and 20 keV, where the doses were respectively 1×10^{15} and 1.65×10^{15} cm⁻², to achieve the same peak value of N_B for P. Then, a Ni film with a thickness of 5 or 10 nm was deposited. After germanidation annealing at 350°C in N₂ for 1 min, the wafers were treated with HCl solution to remove unreacted Ni, which was followed by Ti deposition. As references, NiGe/ n^+ Ge without the second P I/I or Ni deposition or both were also fabricated; in the case without Ni deposition, Ti/ n^+ Ge was fabricated. The value of ρ_C for Ni-Ge/ n^+ Ge was determined by the transfer length method (TLM).

Simulated profiles of P in Ge after P I/I at E_A of 10 and 20 keV corresponding to the 2nd I/I show that the peak N_B was as high as ~5×10²⁰ cm⁻³ (Fig. 1). On the other hand, we confirmed experimentally that the profiles of n^+ Ge with the 1st P I/I Ge after annealing at 600°C had a boxlike shape (~100 nm), where the maximum $N_{\rm B}$ for P was as low as ~2×10¹⁹ cm⁻³ (Fig. 1). Therefore, NiGe/n⁺Ge with the 2nd P I/I is expected to have a high N_B (~5×10²⁰ cm⁻³) at the interface. Next, we observed the n⁺Ge region in NiGe/n⁺Ge by TEM. The TEM images of NiGe/n⁺Ge with and without the 2nd P I/I revealed similar structures (Fig. 2), indicating that the amorphous phase due to the 1st and 2nd P I/I disappeared as a result of annealing at 600 and 350°C, respectively. The J-V characteristics show that the junction leakage currents of NiGe/ n^+/p Ge were considerably suppressed irrespective of the 2nd P I/I (Fig. 3). This is because the residual crystalline defects due to the 2nd I/I were completely confined in the deep n^+ region formed by the 1st I/I and the high-temperature annealing. A junction formed by only the 2nd P I/I and the germanidation process exhibited no rectifying characteristics owing to the residual crystalline defects. On the other hand, the value of J between the two metal contacts in the TLM structures was higher in Ni-Ge/n⁺Ge/NiGe with the 2nd P I/I than without the 2nd P I/I (Fig. 4). To determine the value of ρ_c , we measured the NiGe/n⁺Ge/NiGe structure with various contact spacings in the TLM structure. Figure 5 shows the relationship between the contact spacing and the total resistance for NiGe/ n^+ Ge with and without the 2nd P I/I. Whereas the similar slopes of the two relationships suggest almost the same sheet resistivity (ρsh), the different intercept values suggest that NiGe/ n^+ Ge with the 2nd P I/I has a lower ρ_C than that without the 2nd P I/I. We summarize the average ρ_C for NiGe/n⁺Ge as functions of the Ni thickness and P dose (Fig. 6). Whereas ρ_C for NiGe/n⁺Ge (Ti/n⁺Ge) without the 2nd P I/I gradually decreased with increasing Ni thickness, ρ_C for the junctions with the 2nd P I/I rapidly decreased. ρ_C for the NiGe/n⁺Ge junction fabricated with the 2nd P I/I and 10 nm Ni layer exhibited an ultralow value of $\sim 3 \times 10^{-8} \Omega \text{cm}^2$. We found that ρ_C was strongly correlated with N_B for P at the NiGe/Ge interface (Fig. 7), which was expected from the simulated profiles of P-implanted Ge (Fig. 1). According to the calculated ρ_C on nSi(100)for an SBH of 0.6 eV, a change in N_B from 3×10^{19} to 2×10^{20} cm⁻³ results in a change in ρ_C from 3×10^{-5} to $3 \times 10^{-8} \Omega \text{cm}^2$ [3]. Thus, the change in ρ_c from 3×10^{-5} to $3 \times 10^{-8} \Omega \text{cm}^2$ for NiGe/n⁺Ge can be explained by the increase in N_B around the NiGe/n⁺Ge interface owing to the 2nd P I/I. This result suggests that the P atoms existing around the NiGe/ n^+ Ge interface after the 2nd P I/I were electrically active in spite of the low annealing temperature of 350°C, which is usually insufficient to activate P in bulk Ge. Finally, we compare ρc values for previously reported metal/ n^+ Ge junctions with our result (Table 1). The NiGe/ n^+ Ge contact in this work has the lowest ρc . From these results, the fabrication of NiGe/n⁺Ge by two-step P-ion implantation is an effective means of obtaining metal contacts on S/D junctions with a low ρc in Ge nMOSFETs.

We would like to thank all the technical staff of AIST for supporting our experiment. This work was supported by a grant from JSPS through the FIRST Program initiated by CSTP.

References

[1] M. Koike et al., Appl. Phys. Express 4, 021301 (2011). [2] M. Koike et al., Appl. Phys. Lett., 102, 032108 (2013). [3] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, New York, 1981). [4] M. Shayesteh et al., Electron Dev. 58, 3801 (2011). [5] K. Mrtens et al., Tech. Dig. IEDM, 18.4 (2010). [6] S. Raghunathan et al., ECS Trans. 33, 871, (2010). [7] G. Thareja et al., Electron Dev. Lett., 32, 608 (2010). [8] K. Gallacher et al., ECS Trans, 50, 1081 (2012).

Fig. 2: TEM images of NiGe/ n^+ Ge junctions (a) with 2nd P I/I and (b) without 2nd P I/I. NiGe (~20 nm) was fabricated by annealing Ni (10 nm)/ n^+ Ge.

Voltage (V) Fig. 4: *J-V* characteristics between two contacts (NiGe $/n^+$ Ge/NiGe) in TLM structures.

Contact spacing (μ m) Fig. 5: Relationship between NiGe contact spacing and total resistance including ρc and ρsh in TLM structures.

Fig. 6: Contact resistivities of Ni-Ge/ n^+ Ge junctions in TLM structures.

Table 1:	Contact	resistivity	values	reported	for metal/ n^+	Ge junctions
						5

Metal	Doping	Activation anneal (°C)	NiGe formation (°C)	$\rho c (\Omega cm^2)$	
NiGe	Р	500	250	3.46×10-6	[4]
NiGe	As	900(LSA)	250/330	2.5×10 ⁻⁶	[5]
NiGe	P/Sb		500	8×10 ⁻⁷	[6]
Al/Ti	Sb	LSA		7×10 ⁻⁷	[7]
NiGe	Р		2step 250-340/340	1.68×10 ⁻⁷	[8]
NiGe	2step P	600	350	3×10 ⁻⁸	This work