Low-loss Perforated-Channel HFET

Grigory Simin^{a,} Mikhail Gaevski^b, Jianyu Deng^b, Remis Gaska^b and Michael Shur^c

^a Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 USA, simin@engr.sc.edu, ^b Sensor Electronic Technology, Inc. Columbia, SC 29209, USA, ^c Center for Integrated Electronics, Rensselaer Polytechnic Institute, NY 12180 USA

The on-resistance - gate capacitance product, $R_{ON}C_G$, is an important figure of merit of FET switch characterizing the overall power losses [1, 2]. Decreasing R_{ON} by shortening gate-drain spacing decreases the maximum voltage that the power device can operate at and thus typically is not feasible. Reducing R_{ON} by increasing the total device width leads to a larger gate capacitance C_G , which, in turn, leads to higher switching loss. The same $R_{ON}C_G$ figure merit relates to the efficiency of microwave power amplifiers, especially those operating in class E, F and other switching modes [3].

We demonstrate a simple and robust perforated channel (PC) HFET design that reduces the onresistance without increasing the total gate capacitance. The reduction of R_{ON} is achieved by using the current spreading effect in gate-drain and gate-source regions. Fig. 1(a) shows the schematic of this novel

Fig. 1. Schematic structure and current density pattern in the simulated AlGaN/GaN based PC-HFET. Circles indicate the areas where is channel material is removed. Numbers show normalized channel current density in the points indicated by the arrowheads.

patent pending design for AlGaN/GaN HFET. The portions of the channel under the gate are removed by etching or by any other appropriate technique leaving the channel material in the access regions intact. As a result, the gate - channel capacitance decreases. The source and especially the drain side access resistances are significantly smaller than those for the conventional devices with the same C_G and continuous channel. As a result, the total device R_{ON}C_G product is smaller as well. Known solutions like Heterodimensional HFETs [4, 5]FinFET, tri-gate or multi-mesa FETs also use the channel profiling under the

gate [6, 7, 8]. However, the channel profiling in these devices is only feasible using nano-scale islands formed in the channel. In contrast, our design is simple and robust; it produces a significant on-resistance reduction using conventional optical lithography process and can be easily implemented in power FET and IC fabrication.

2D simulations of PC-HFET have been performed using Synopsys Sentaurus Device simulator. The HFETs had the channel sheet resistance $R_{SH} = 300$ Ohm/sq, gate length $L_G = 1 \ \mu m$; the source-gate distance $L_{SG} = 1 \ \mu m$, the gate island width $W_G = 2 \ \mu m$, the spacing between islands $W_{GG} = 1 - 10 \ \mu m$ and the gate – drain distance $L_{GD} = 1 - 10 \ \mu m$ varied in the simulations. The color pattern in Fig. 1(a) shows simulated normalized current density in the PC-HFET channel with $W_G = 1 \ \mu m$, $W_{GG} = 3 \ \mu m$ and $L_{GD} = 5 \ \mu m$ at the drain bias below the knee voltage. As shown by the numbers with arrows, the current density in the G-D spacing within only 1 μm off the gate edge reduces almost twice, which indicates a strong current spreading effect in the G-D region. Fig. 1(b) shows simulated PC-HFET G – D region resistance normalized to that of the conventional HFET with the same channel width (i.e. same C_G). As seen, at $W_{GG}/W_G = 3 - 4$, three-four fold R_{GD} reduction is achievable without increasing the HFET capacitance C_G .

Experimental PC-HFETs have been fabricated on epi-structure consisting of 2 µm thick GaN buffer and 20 nm thick Al_{0.3}Ga_{0.7}N barrier grown on sapphire using Migration Enhanced MOCVD (MEMOCVD[®]) technique. Inductively coupled plasma etching was used to define mesa pattern and

channel perforation with island width $W_G = 2.7 \ \mu m$ and spacing $W_{GG} = 3.7 \ \mu m$ (Fig.2 (a)). The island/spacing ratio was in close agreement with the data extracted from C-V of the devices with and without perforation. The holes were then planarized with PCVD SiO₂ film. Ti/Al/Ni/Au metal stack was used to form the ohmic contacts. The Ni/Au gate was deposited by e-beam evaporation and precisely aligned with the perforation openings. The gate length was $L_G = 1.5 \ \mu m$; total (islands plus spacings) gate width was 300 μm . Gate - source spacing was 1.2 μm and gate - drain spacing was varied from 5 to 30 μm . The HFETs were passivated with PECVD deposited SiN_x.

Fig. 2. (a): SEM-image of the PC-HFET and (b): experimental (points) and simulated (dashed line) R_{GD} - L_{GD} dependencies for conventional HFET and PC-HFET.

Fig. 2(b) shows experimental gate – drain resistances for conventional and PC- HFETs fabricated on the same substrate. The resistance is normalized to the channel width, i.e. both conventional and PC-HFETs presented in Fig. 2(b) have the same capacitance C_G . Dashed line shows the same dependence from 2D simulations. As seen, PC-HFET shows slower R_{GD} increase with L_{GD} and around two times lower R_{GD} value as compared to conventional HFET. These results confirm the feasibility and great potential of perforated channel design for power HFET applications.

References

- D. A. Grant and J. Gower, "Power MOSFET Theory and Applications," Chapter 3, New York, Wiley, 1989
- [2] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, "Analytical Loss Model of Power MOSFET," IEEE Trans. Power Electronics, Vol. 21, pp. 310-319, 2006
- [3] A. Grebennikov, High-Efficiency Class E/F Lumped and Transmission-Line Power Amplifiers, IEEE, MTT- 59, 1579 – 1588, 2011
- [4] W. C. B. Peatman, M. Hurt, H. Park, R. Tsai, and M. S. Shur, Narrow Channel 2-D MESFET for Low Power Electronics, IEEE Trans. Electron Devices, 42, No. 9, pp. 1569-1573, September (1995)
- [5] W. C. B. Peatman, R. Tsai, R. M. Weikle, II, and M. S. Shur, Microwave Operation of Multi-Channel 2-D MESFET, Electronics Letters, Vol. 34, No. 10, pp. 1029-1030, 14 May, 1998
- [6] Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "Sub-20 nm CMOS FinFET technologies," IEDM Tech. Dig., pp. 421–424, 2001
- [7] K. Ohi and T. Hashizume, "Reduction of current collapse in multi-mesa-channel AlGaN/GaN HEMTs," *Phys. Stat. Sol. C*, vol.9, pp.898-902, 2012
- [8] B. Lu, E. Matioli, and T. Palacios, "Tri-Gate Normally-Off GaN Power MISFET," IEEE Electron Device Lett., vol. 33, no. 3, pp. 360–362, 2012.