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Plasmonic nano-antennas, which couple optics and electronics, are of increasing interest as 

waveguides, emitters, and interconnects in semiconductor devices, particularly in the near infrared region 

[1,2]. Dynamic enhancement of opto-electronic coupling could fundamentally impact performance of 

plasmonic nanoantenna semiconductor devices integrated into applications as diverse as biomedical 

theranostics, synthetic biology, and sustainable energy [3].  

Fundamentally, quantized photon-exciton coupling is the source of 

electron-hole pairs in semiconductor photovoltaics, induced charge 

transfer in ordered DNA chains, and distance-dependent Forster 

resonance energy transfer in spectroscopic molecular rulers [4].   

 

Our lab has recently distinguished relative contributions of 

quantized plasmon polarizabilities and photon diffraction to 

extraordinary opto-electronic coupling in ordered metal-ceramic and 

metal-polymeric nanocomposite metamaterials (see Fig 1) [5,6].  

Metamaterials exhibit tunable electromagnetic functionality -- from 

simple iridescence in butterfly wings to radiofrequency cloaking -- due 

to coherent interference from multidimensional structuring of suitable 

condensed-matter composites.  We showed that surface energy driven 

self-assembly of plasmonic metamaterials can occur by electroless 

nanosphere synthesis on nanolithographed 

anti-gecko lattices [7].  This novel result has 

been extended to modulate nanoscale 

photodynamic, hydraulic, and redox potentials 

to allow ionic precursors to nucleate into 

various nanostructured isoforms including 

spheres, island films, and clusters with various 

substrates (see Fig. 4) [8-10]. Recent progress 

has been made in distinguishing coherent and 

incoherent optical re-radiation and thermal 

dissipation from plasmonic nano-antennas in 

devices by correlating experimental and 

theoretical results [11]. 

 

Description and design of dynamical electron optics in 

systems and devices has been obstructed to date by expense and 

complexity of available numerical computations and effective 

media approximations [12,13].  Our group has developed and 

validated a suite of rapid approximate methods which synthesize 

tractable descriptions of near-field polarizability and far-field 

modal interference to efficiently describe energetics of electron 

optic coupling in plasmonic metamaterials (See Fig 2) [5,6,14].  In 

particular, this approach supports quantitative attribution of effects 

of physicochemical and geometrical features of nanocomposite 

metamaterials on quantum and continuum interactions that exhibit 

predictable Fano resonances and thermal dissipation in near infrared regions (see Fig 3) [15].  A recent 

extension of this approach to geometric optics supported accurate prediction and characterization of linear 

and non-linear influences, respectively, of plasmonic nanocomposites in microscale systems [13].   

 
Fig 1. Describing self-

assembled gold nanoparticle 

plasmonic metamaterial. 
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Fig 2. Frequency-dependent dipole and quadrupole 

polarizabilites for various gold nanoparticles [6]. 

 

 Fig 3. Phase interference 

modulates Fano resonant energy.   
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Characterization of fabricated metamaterials and validation of their fundamental descriptions has 

been facilitated in our lab by microspectroscopies (x-ray photoelectron; transmission UV; and Raman) 

and transmission/scanning electron and optical microscopies. Advances in these physicochemical 

characterization methods have supported measurable improvements in opto-electronic interactions in 

nano-scale metallic particles and films (see Fig. 4) [8,9,13,16].  These advances in modeling, fabrication, 

characterization, and systems integration are important milestones toward integrating electromagnetically 

active nanocomposite metamaterials into next-generation semiconductor devices that support micro-to-

nano-scale electronics, tele-

communications, with extensions to 

molecular engineering, disease diagnosis, 

personalized therapies, and energy 

harvesting [17]. 
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Fig 4. Thermally tunable metalloceramic nanomorphs.   
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