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Plasmonic nano-antennas, which couple optics and electronics, are of increasing interest as
waveguides, emitters, and interconnects in semiconductor devices, particularly in the near infrared region
[1,2]. Dynamic enhancement of opto-electronic coupling could fundamentally impact performance of
plasmonic nanoantenna semiconductor devices integrated into applications as diverse as biomedical
theranostics, synthetic biology, and sustainable energy [3]. ;
Fundamentally, quantized photon-exciton coupling is the source of
electron-hole pairs in semiconductor photovoltaics, induced charge
transfer in ordered DNA chains, and distance-dependent Forster
resonance energy transfer in spectroscopic molecular rulers [4].

Our lab has recently distinguished relative contributions of
guantized plasmon polarizabilities and photon diffraction to
extraordinary opto-electronic coupling in ordered metal-ceramic and
metal-polymeric nanocomposite metamaterials (see Fig 1) [5,6].
Metamaterials exhibit tunable electromagnetic functionality -- from . —
simple iridescence in butterfly wings to radiofrequency cloaking -- due ~ Fig 1. Describing self-
to coherent interference from multidimensional structuring of suitable ~ assembled gold nanoparticle
condensed-matter composites. We showed that surface energy driven  Plasmonic metamaterial.
self-assembly of plasmonic metamaterials can occur by electroless
nanosphere synthesis on nanolithographed
anti-gecko lattices [7]. This novel result has i
been extended to modulate nanoscale .
photodynamic, hydraulic, and redox potentials
to allow ionic precursors to nucleate into
various nanostructured isoforms including
has been made in distinguishing coherent and
incoherent optical re-radiation and thermal 50
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spheres, island films, and clusters with various
substrates (see Fig. 4) [8-10]. Recent progress
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Description and design of dynamical electron optics in

systems and devices has been obstructed to date by expense and 00
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complexity of available numerical computations and effective 2 ey
media approximations [12,13]. Our group has developed and 2 y o
validated a suite of rapid approximate methods which synthesize ~ £ sof ~ 0 < C”Qfﬁ'“"
tractable descriptions of near-field polarizability and far-field £ \ : O
modal interference to efficiently describe energetics of electron 2 Wy XF
optic coupling in plasmonic metamaterials (See Fig 2) [5,6,14]. In % 600 610 620 6

particular, this approach supports quantitative attribution of effects _ Incident Wavelength (nm)

of physicochemical and geometrical features of nanocomposite ~ F19 3. Phase interference
metamaterials on quantum and continuum interactions that exhibit ~ modulates Fano resonant energy.
predictable Fano resonances and thermal dissipation in near infrared regions (see Fig 3) [15]. A recent
extension of this approach to geometric optics supported accurate prediction and characterization of linear
and non-linear influences, respectively, of plasmonic nanocomposites in microscale systems [13].
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Characterization of fabricated metamaterials and validation of their fundamental descriptions has
been facilitated in our lab by microspectroscopies (x-ray photoelectron; transmission UV; and Raman)
and transmission/scanning electron and optical microscopies. Advances in these physicochemical
characterization methods have supported measurable improvements in opto-electronic interactions in
nano-scale metallic particles and films (see Fig. 4) [8,9,13,16]. These advances in modeling, fabrication,
characterization, and systems integration are important milestones toward integrating electromagnetically
active nanocomposite metamaterials into next-generation semiconductor devices that support micro-to-
nano-scale electronics, tele-
communications, with extensions to
molecular engineering, disease diagnosis,
personalized therapies, and energy :
harvesting [17] After EL-EBL i i £=120 min (60+60)

Fig 4. Thermally tunable metalloceramic nanomorphs.
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